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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for 

Economic Co-operation and Development (OECD) to implement an international energy programme. A basic aim 

of the IEA is to foster international co-operation among the 29 IEA participating countries and to increase energy 

security through energy research, development and demonstration in the fields of technologies for energy efficiency 

and renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive 

portfolio of Technology Collaboration Programmes. The mission of the Energy in Buildings and Communities 

(EBC) Programme is to develop and facilitate the integration of technologies and processes for energy efficiency 

and conservation into healthy, low emission, and sustainable buildings and communities, through innovation and 

research. (Until March 2013, the IEA-EBC Programme was known as the Energy in Buildings and Community 

Systems Programme, ECBCS.) 

The research and development strategies of the IEA-EBC Programme are derived from research drivers, national 

programmes within IEA countries, and the IEA Future Buildings Forum Think Tank Workshops. The research and 

development  (R&D) strategies of IEA-EBC aim to exploit technological opportunities to save energy in the 

buildings sector, and to remove technical obstacles to market penetration of new energy efficient technologies. The 

R&D strategies apply to residential, commercial, office buildings and community systems, and will impact the 

building industry in five focus areas for R&D activities:  

– Integrated planning and building design 

– Building energy systems 

– Building envelope 

– Community scale methods 

– Real building energy use 

The Executive Committee 

Overall control of the IEA-EBC Programme is maintained by an Executive Committee, which not only monitors 

existing projects, but also identifies new strategic areas in which collaborative efforts may be beneficial. As the 

Programme is based on a contract with the IEA, the projects are legally established as Annexes to the IEA-EBC 

Implementing Agreement. At the present time, the following projects have been initiated by the IEA-EBC Executive 

Committee, with completed projects identified by (*): 

Annex 1: Load Energy Determination of Buildings (*) 

Annex 2:  Ekistics and Advanced Community Energy Systems (*) 

Annex 3:  Energy Conservation in Residential Buildings (*) 

Annex 4:  Glasgow Commercial Building Monitoring (*) 

Annex 5:  Air Infiltration and Ventilation Centre  

Annex 6:  Energy Systems and Design of Communities (*) 

Annex 7:  Local Government Energy Planning (*) 

Annex 8:  Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9:  Minimum Ventilation Rates (*) 

Annex 10:  Building HVAC System Simulation (*) 

Annex 11:  Energy Auditing (*) 

Annex 12:  Windows and Fenestration (*) 

Annex 13:  Energy Management in Hospitals (*) 

Annex 14:  Condensation and Energy (*) 

Annex 15:  Energy Efficiency in Schools (*) 
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Annex 16:  BEMS 1- User Interfaces and System Integration (*) 

Annex 17:  BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18:  Demand Controlled Ventilation Systems (*) 

Annex 19:  Low Slope Roof Systems (*) 

Annex 20:  Air Flow Patterns within Buildings (*) 

Annex 21:  Thermal Modelling (*) 

Annex 22:  Energy Efficient Communities (*) 

Annex 23:  Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24:  Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25:  Real time HVAC Simulation (*) 

Annex 26:  Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27:  Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28:  Low Energy Cooling Systems (*) 

Annex 29:  Daylight in Buildings (*) 

Annex 30:  Bringing Simulation to Application (*) 

Annex 31:  Energy-Related Environmental Impact of Buildings (*) 

Annex 32:  Integral Building Envelope Performance Assessment (*) 

Annex 33:  Advanced Local Energy Planning (*) 

Annex 34:  Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35:  Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36:  Retrofitting of Educational Buildings (*) 

Annex 37:  Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38:  Solar Sustainable Housing (*) 

Annex 39:  High Performance Insulation Systems (*) 

Annex 40:  Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42:  The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems  

(FC+COGEN-SIM) (*) 

Annex 43: Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46:  Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings 

(EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: Towards Net Zero Energy Solar Buildings (*) 

Annex 53: Total Energy Use in Buildings: Analysis & Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation & Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance & 

Cost    (RAP-RETRO) (*) 

Annex 56: Cost Effective Energy & CO2 Emissions Optimization in Building Renovation 

Annex 57: Evaluation of Embodied Energy & CO2 Equivalent Emissions for Building Construction 

Annex 58:  Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic 

Measurements  

Annex 59: High Temperature Cooling & Low Temperature Heating in Buildings 

Annex 60: New Generation Computational Tools for Building & Community Energy Systems 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings 

Annex 62:  Ventilative Cooling 

Annex 63:  Implementation of Energy Strategies in Communities 

Annex 64: LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles 

Annex 65: Long Term Performance of Super-Insulating Materials in Building Components and Systems 

Annex 66: Definition and Simulation of Occupant Behavior Simulation 

Annex 67: Energy Flexible Buildings 

Annex 68: Design and Operational Strategies for High IAQ in Low Energy Buildings 
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Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

IEA EBC Annex 58: Reliable Building energy performance characterisation based on full 

scale dynamic measurements 

Annex 58 in general 

To reduce the energy use of buildings and communities, many industrialised countries have imposed more and 

more stringent requirements in the last decades. In most cases, evaluation and labelling of the energy performance 

of buildings are carried out during the design phase. Several studies have shown, however, that the actual 

performance after construction may deviate significantly from this theoretically designed performance. As a result, 

there is growing interest in full scale testing of components and whole buildings to characterise their actual thermal 

performance and energy efficiency. This full scale testing approach is not only of interest to study building 

(component) performance under actual conditions, but is also a valuable and necessary tool to deduce simplified 

models for advanced components and systems to integrate them into building energy simulation models. The same 

is true to identify suitable models to describe the thermal dynamics of whole buildings including their energy 

systems, for example when optimising energy grids for building and communities. 

It is clear that quantifying the actual performance of buildings, verifying calculation models and integrating new 

advanced energy solutions for nearly zero or positive energy buildings can only be effectively realised by in situ 

testing and dynamic data analysis. But, practice shows that the outcome of many on site activities can be questioned 

in terms of accuracy and reliability. Full scale testing requires a high quality approach during all stages of research, 

starting with the test environment, such as test cells or real buildings, accuracy of sensors and correct installation, 

data acquisition software, and so on. It is crucial that the experimental setup (for example the test layout or boundary 

conditions imposed during testing) is correctly designed, and produces reliable data. These outputs can then be used 

in dynamic data analysis based on advanced statistical methods to provide accurate characteristics for reliable final 

application. If the required quality is not achieved at any of the stages, the results become inconclusive or possibly 

even useless. The IEA EBC Annex 58-project arose from the need to develop the necessary knowledge, tools and 

networks to achieve reliable in situ dynamic testing and data analysis methods that can be used to characterise the 

actual energy performance of building components and whole buildings. As such, the outcome of the project is not 

only of interest for the building community, but is also valuable for policy and decision makers, as it provides 

opportunities to make the step from (stringent) requirements on paper towards actual energy performance 

assessment and quality checking. Furthermore, with the developed methodology it is possible to characterise the 

dynamic behaviour of buildings, which is a prerequisite for optimising smart energy and thermal grids. Finally, the 

project developed a dataset to validate numerical Building Energy Simulation programs.  

Structure of the project 

Successful full scale dynamic testing requires quality over the whole process chain of full scale testing and dynamic 

data analysis: a good test infrastructure, a good experimental set-up, a reliable dynamic data analysis and appropriate 

use of the results. Therefore, the annex-project was organised around this process chain, and the following subtasks 

were defined: 

Subtask 1 made an inventory of full scale test facilities available all over the world and described the common 

methods with their advantages and drawbacks for analysing the obtained dynamic data. This subtask produced an 

overview of the current state of the art on full scale testing and dynamic data analysis and highlighted the necessary 

skills. 

Subtask 2 developed a roadmap on how to realise a good test environment and test set-up to measure the actual 

thermal performance of building components and whole buildings in situ. Since there are many different objectives 

when measuring the thermal performance of buildings or building components, the best way to treat this variety has 
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been identified as constructing a decision tree. With a clear idea of the test objective, the decision tree will give the 

information of a test procedure or a standard where this type of test is explained in detail. 

Subtask 3 focused on quality procedures for full scale dynamic data analysis and on how to characterise building 

components and whole buildings starting from full scale dynamic data sets. The report of subtask 3 provides a 

methodology for dynamic data analysis, taking into account the purpose of the in situ testing, the existence of prior 

physical knowledge, the available data and statistical tools,… The methodologies have been tested and validated 

within different common exercises, in a way that quality procedures and guidelines could be developed. 

Subtask 4 produced examples of the application of the developed concepts and showed the applicability and 

importance of full scale dynamic testing for different issues with respect to energy conservation in buildings and 

community systems, such as the verification of common BES-models, the characterisation of buildings based on in 

situ testing and smart meter readings and the application of dynamic building characterisation for optimising smart 

grids. 

Subtask 5 established a network of excellence on ‘in situ testing and dynamic data analysis’ for dissemination, 

knowledge exchange and guidelines on testing. 

Overview of the working meetings 

The preparation and working phase of the project encompassed 8 working meetings: 

 

Meeting Place, date Attended by 

Kick off meeting Leuven (BE), September 2011 45 participants 

Second preparation meeting Bilbao (SP), April 2012 46 participants 

First working meeting Leeds (UK), September 2012 44 participants 

Second working meeting Munich (GE), April 2013 53 participants 

Third working meeting Hong-Kong (CH), September 2013 26 participants 

Fourth working meeting Gent (BE), April 2014 49 participants 

Fifth working meeting Berkeley (USA), September 2014 37 participants 

Sixth working meeting Prague (CZ), April 2015 39 participants 

During these meetings, working papers on different subjects related to full scale testing and data analysis were 

presented and discussed. Over the course of the Annex, a Round Robin experiment on characterising a test box was 

undertaken, and several common exercises on data analysis methods were introduced and solved.  

Outcome of the project 

The IEA EBC Annex 58-project worked closely together with the Dynastee-network (www.dynastee.info). Enhancing 

this network and promoting actual building performance characterization based on full scale measurements and the 

appropriate data analysis techniques via this network is one of the deliverables of the Annex-project. This network of 

excellence on full scale testing and dynamic data analysis organizes on a regular basis events such as international 

workshops, annual training,...  and will be of help for organisations interested in full scale testing campaigns. 

In addition to the network of excellence, the outcome of the Annex 58-project has been described in a set of reports, 

including: 

Report of Subtask 1A: Inventory of full scale test facilities for evaluation of building energy performances. 

Report of Subtask 1B: Overview of methods to analyse dynamic data 

Report of Subtask 2: Logic and use of the decision tree for optimizing full scale dynamic testing. 

Report of Subtask 3 part 1: Thermal performance characterization based on full scale testing: physical guidelines 

and description of the common exercises 

Report of Subtask 3 part 2: Thermal performance characterization using time series data – statistical guidelines. 

Report of Subtask 4A: Empirical validation of common building energy simulation models based on in situ dynamic 

data. 

Report of Subtask 4B: Towards a characterization of buildings based on in situ testing and smart meter readings and 

potential for applications in smart grids 

IEA EBC Annex 58 project summary report 

http://www.dynastee.info/
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Symbols and units 

 
A m²  Area 

Asol m²  Solar aperture 

C J/K  Effective heat capacity of a space or building 

g -  Total solar energy transmittance of a building element 

H W/K  Heat transfer coefficient of a building 

Htr W/K  Transmission heat transfer coefficient 

Hve W/K  Ventilation heat transfer coefficient (including infiltration) 

Isol W/m²  Solar irradiance 

Q J  Quantity of heat 

q W/m²  Heat flow density 

R m²K/W  Thermal resistance 

T K  Thermodynamic temperature 

t s  Time, period of time 

U W/m²K  Thermal transmittance 

 °C  Centigrade temperature 

 W  Heat flow rate 

P W  Thermal power 
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1. Introduction 

A. Janssens (UGent) 

The aim of the first subtask of IEA EBC Annex 58 was to give an overview and evaluation of 
previous and on-going in situ test activities based on a literature review and existing reports. 
An inventory was made of full scale test facilities for the evaluation of energy performances 
of building components and systems available at different institutes all over the world. 
Furthermore common methods were described to analyse the dynamic data obtained from 
full scale testing, with their advantages and drawbacks. The overview of full scale testing and 
dynamic data analysis is limited to energy performance characterization of either building 
components or whole buildings. 

This report relates to the second part of the subtask, and gives an overview of existing data 
analysis methods, ranging from averaging and regression methods to dynamic approaches 
based on system identification techniques. These methods are discussed in relation to their 
application in following in situ measurements: 

 measurement of thermal transmittance of building components based on heat flux 
meters; 

 measurement of thermal and solar transmittance of building components tested in 
outdoor calorimetric test cells; 

 measurement of heat transfer coefficient and solar aperture of whole buildings based 
on co-heating or transient heating tests; 

 characterisation of the energy performance of whole buildings based on energy use 
monitoring. 

Chapter 4 discusses the analysis of data obtained via the ‘heat flow meter method’, to define 
the in situ thermal transmittance of building components. Both steady-state and dynamic 
data analysis methods are presented to derive the thermal transmittance from the measured 
data. 

Chapter 5 presents the methods used to analyse data obtained in outdoor calorimetric test 
cells. These test cells aim to obtain the thermal and solar characteristics of opaque or 
transparent building components under real dynamic outdoor conditions. As the overview 
shows, the emphasis has moved from steady state to dynamic methods with shorter test 
durations yielding improved information and more accurate results, with calculation of 
confidence intervals on the estimates in some cases. 

Chapter 6 explains the analysis of measuring data of co-heating tests to estimate the heat 
transfer coefficient of a whole building. The focus of the chapter is on the use of linear 
regression techniques in relation with recommendations to set-up the experiment for reliable 
results. 

Chapter 7 presents a specific test and analysis method, the QUB-method (Quick U-value of 
Buildings) as an example of a method developed to overcome the relatively long test 
duration of co-heating tests. These alternative test protocols, based on transient heating, 
take short-term data obtained in one or two days as a starting point to estimate the heat 
transfer coefficient of a building. To obtain reliable results a number of conditions have to be 
met. 

Chapter 8 discusses linear regression methods, often referred to as energy signature 
techniques, applied to analyse energy monitoring data collected in buildings in use. This is 
done by investigating the correlation between the total energy consumption of the building 
over a given time step, and the corresponding climatic conditions. The chapter presents 
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solutions to extend energy signature techniques to the analysis of data on short time 
intervals, for instance obtained from energy monitoring systems.  

Chapter 9 presents modelling techniques which describe the heat dynamics of the building to 
analyse high-time resolution energy monitoring data. An analysis technique that allows for 
energy performance characterisation without a detailed description of the building is grey-box 
modelling where prior physical knowledge is combined with data driven statistical modelling 
techniques. The parameters in the model are directly interpretable as representing the 
physical properties of the building, e.g. the heat transfer coefficient, effective heat capacities, 
or effective solar aperture. 

Each chapter starts with a short description of the test procedure used to obtain measuring 
data, followed by the presentation of the data analysis method and uncertainty estimation, 
and a discussion of the advantages and drawbacks of the method. Finally each chapter 
concludes with some application examples and a list of references in literature. The chapters 
provide a general outline. Readers who are interested in a more detailed elaboration of the 
methods and applications presented in this book are referred to the references. 

Throughout the different chapters the same symbols and terminology are used as proposed 
in the International Standard ISO 13790 on energy performance of buildings. However, since 
the figures in this book come from different sources, the legends and symbols used in the 
figures are not always consistent with ISO. If this is the case this is clarified in the figure 
caption or in the text. 
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2. Measurement of thermal transmittance of 
building components based on heat flux 
meters 

G. Flamant (BBRI) 

2.1 Test procedure 

The in situ measurement of the thermal resistance and thermal transmittance is covered by 
the international standard ISO 9869 (1994) prepared by the Technical Committee 
ISO/TC163. This standard has been revised and republished in 2014 (ISO 2014). It 
describes the ‘heat flow meter method’ for the measurement of the thermal transmission 
properties of plane building components, primarily consisting of opaque layers perpendicular 
to the heat flow and having no significant lateral heat flow. 

By the use of the ‘heat flow meter method’, the following thermal properties can be 
measured: 

- The thermal resistance and thermal conductance, from surface to surface 
- The total thermal resistance and transmittance, from environment to environment 

The latter properties are more difficult to obtain because they require the knowledge of the 
‘environmental’ temperatures at both sides of the component. The concept of the 
‘environmental’ temperature combines the effects of heat transfer by convection and 
radiation at the outer and inner faces of the component. Due to changing weather and 
climatic conditions, the surface coefficients of heat transfer are not constant. Therefore it is 
preferable to determine the thermal properties from surface to surface instead of from 
environment to environment. In many cases it corresponds to what we are interested in.  

The thermal resistance and thermal conductance of a plane element which is sufficiently 
homogeneous can be obtained by measuring : 

- The density of heat flow rate through the component , by the use of a ‘heat flow 
meter’ typically mounted at the inner face of the component 

- Surface temperatures at both faces of the component, by the use of thermocouples or 
flat resistance thermometers 

Several sources of uncertainty exist and will be described in the next section. If a certain 
number of requirements are met, the revised draft of ISO/WD9869-1 indicates a total 
uncertainty between 14 % and 28 %. 

2.2 Sources of errors 

A list of the uncertainty/error sources is given below and is subdivided in 3 categories : 

1. Error/uncertainty related the boundary conditions of the in situ measurement : 
o Imbalance of the heat flow rate 
o Edge heat loss  
o Accuracy in the position of each temperature sensor (on hot and cold side) 
o Non perfect contact between the heat flow meter and the inner face of the wall 
o … 

2. Error related to the measurement accuracy  
o Reading of the output of the heat flow meter 
o Reading of the temperature sensors 
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o Calibration of the heat flow meter 
o Calibration of the temperature sensors 

3. Error related to the analysis of data 
o Error caused by the analysis of non-steady state temperatures and heat flow 

rate 

2.3 Data analysis 

2.3.1 STEADY-STATE ANALYSIS 
The average method assumes that the conductance or transmittance can be obtained by 
dividing the mean density of heat flow rate by the mean temperature difference. The average 
is calculated over a period of time long enough to reach convergence. 

Eq. 4.1 gives the estimate of the average method of the surface to surface heat resistance 
after N measurements (RN in [m²K/W]) 
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This method is a straightforward analysis technique but shows drawbacks: 

- The method yields no information on the dynamics of the component 
- A long test duration is needed to obtain a relative accurate result 
- The method ignores the possible effect of the short term variations in weather 

conditions on the properties of the component 
- The method assumes that the heat content of the component is the same at the end 

and the beginning of the measurement period (same temperature and same moisture 
distribution) 

- Uncertainties become too large when average heat flux density or temperature 
difference is small. 

According to ISO (2014), the following conditions have to be fulfilled in order to carry out this 
method : 

- The test duration has to exceed 72 hours (3 days). 
- The estimate at the end of the test period should not deviate by more than 5% from 

the estimate at 24 hours before. 
- The estimate corresponding to the first 2/3 part of the test period should not deviate 

by more than 5% from the estimate corresponding to the last 2/3 part of that period. 
- During the experiment duration the wall should not be exposed to solar radiation and 

rain. 
- The change in internal energy of the wall has to be less than 5% of the heat passing 

through the wall over the test period. One should estimate that change by the 
difference between the average temperature of the wall at the start of the test period 
and that temperature at the end of that period, multiplied by the specific heat and the 
wall’s mass.  

Some of these conditions are difficult to meet in practice when measuring the thermal 
performances of a completely unknown component. Nevertheless the application of this 
simple technique can be useful as a first step in the analysis process, providing some 
quantitative and qualitative information about the measured data.  

The drawbacks mentioned above are mainly related to the measurement of medium to heavy 
elements. For (very) light building components (e.g. glazings), the steady-state analysis 
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performed on the data acquired at night (to avoid the effects of solar radiation) may deliver 
accurate results (see example in §4.4). 

2.3.2 DYNAMIC ANALYSIS 
The use of a dynamic method (identification method) has the big advantage to give 
information on the capacitance of the monitored component and shorten the test duration, 
particularly for medium to heavy elements submitted to variable indoor and outdoor 
temperatures (Bloem 1996).  

The maximum time period between two records (temperatures and heat flux) and the 
minimum test duration depends on : 

- the nature of the element (heavy, light, internal or external insulation); 
- indoor and outdoor temperatures (average and fluctuations, before and during 

measurement); 
- the method for analysis. 

Several identification methods exist and can be applied for the determination of the in situ 
thermal resistance of components. Among these models, the use of lumped parameter 
model is convenient in many cases. This model is based on a series of RC-models 
representing the physical system: a wall is divided into different nodes that are 
interconnected with thermal conductances H and capacitances C.  

 

Figure 4.1: Heat balance on a single node 2. 

Figure 4.1 shows an example. The heat balance at node 2 is observed: 

     232232121
2

2 qH·TTH·TT
dt

dT
·C    (4.2) 

Where H1–2 and H2–3 are conductances and q2 an external heat flux that may be considered 
(solar radiation, heating or cooling system, etc.). An analogous differential equation is valid 
for every node with unknown temperature. 

The model parameters comprise therefore the dynamic and steady state thermal properties 
of the system. The output of the actual test is then compared with the output which the model 
produces for the same conditions (input). The parameters are adjusted by iterations in order 
to reduce and minimise the deviation between measured and model output, the so-called 
objective function of which an example is presented in eq. 4.3. This iterative process is 
carried out with the aid of specialized software tools (e.g. LORD, CTSM). Figure 4.2 shows a 
scheme of the parameter identification principle. 
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Figure 4.2: Principle of parameter identification. 

It is needed to obtain statistical information on the reliability of the identified parameters. The 
reliability may be negatively affected by measurement and model errors and by correlation 
between parameters.  

The main requirements for an appropriate model are as follows (Bloem 1994): 

- The model should be able to accurately reproduce the steady-state and dynamic 
thermal processes. 

- It should be able to relate the identified physical properties with definitions in 
international standards. 

- It should not be too detailed, in the sense that it leads to 'over parameterisation', i.e. 
the situation in which some of the parameters cannot be identified because of strong 
correlation with other 'free' parameters in the model. 

- It should preferably allow for prior knowledge to be used. 
- It should preferably allow the option of adding specific non-linearities, such as a 

specific thermal resistance changing with temperature or with wind velocity, or solar 
transmittance changing with solar and sky conditions. 

By adopting these requirements the model created should be 'transparent', i.e. a model in 
which the main elements of the heat balance of the tested component are recognised. 

2.4 Application examples 

2.4.1 IN SITU MEASUREMENT OF THE U-VALUE OF A VERY ENERGY EFFICIENT BUILDING. 
A heat flow meter has been installed on the inner face of a triple glazing together with a 
thermocouple at the inner and outer faces, in order to check in situ the U-value declared by 
the manufacturer. The same procedure has been applied to measure the U-value of an 
opaque concrete wall insulated by an external thick insulating material (ETIC system). Both 
glazing and opaque wall are oriented to the north. 

Figure 4.3 gives the measured ‘average’ heat flux in function of the ‘average’ temperature 
difference between inside and outside (in this case, ‘average’ means average of the 5 
minutes data during 4 hours). For the glazing, only hours during night time have been 
considered. 

One can clearly see a good linear regression between heat flux and temperature difference 
in the case of the glazing; the application of the average method gives results with good 
accuracy. On the other hand, the average method is not appropriate for the thick insulated 
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wall due to the high insulation level and high thermal mass. In this latter case, a longer 
averaging time of at least 72 hours is required, or a dynamic method may provide reliable 
results. 

 

Figure 4.3: Linear regression between heat flux and temperature difference. Left: heavy wall 
with thermal insulation; right: triple glazing unit. 

2.4.2 OPAQUE INSULATING PANEL  
This section discusses results of a measuring campaign where the thermal performance of 
an insulating panel with thickness 20 cm is determined. The insulating material is protected 
by inner and outer wood sheets. Therefore this panel is characterised by a high thermal 
resistance but by a low thermal mass. Before using dynamic methods, some steady-state 
calculations have been done as a first step to estimate the U-value. 

The average method has been applied by increasing the length of observations with a 
timestep of 1 day. Figure 4.4 shows the average surface-to-surface conductance versus the 
number of days. By averaging the data on the whole test period (8 days), the steady state 
calculation gives a U-value of 0.183 W/m²K. 

As mentioned above, the average method can deliver results with reasonable accuracy for 
walls with low thermal mass but requires duration of minimum 6 to 8 days (in this case) to 
reach convergence. 

 

Figure 4.4: Result of average method as a function of number of days of analysis 

Also a dynamic method has been applied. Figure 4.5 shows the model chosen for 
identification of the one-dimensional surface-to-surface conductance: a thermal network of 2 
capacitances and 3 conductances. Experience has shown that this model is appropriate for 
this kind of component. 
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Figure 4.5: Model for identification of the conductance of the opaque component 

 

Figure 4.6: Identification results for output variable IQHF_A 

The input variables are the internal surface temperature IQAT01 and the external surface 
temperature IQAT07. Heat flux IQHF_A has been used as output. The surface to surface 
one-dimensional conductance of the component is calculated as the steady state heat flow 
between the nodes IQAT01 (inside surface temperature) and IQAT07 (outside surface 
temperature) for 1K temperature difference between these two points. The identification 

gives a surface-to-surface U-value of 0.179 W/m²K  0.4%, which is very close to the value 
determined by the average method. The residue is distributed randomly around zero, as 
Figure 4.6 demonstrates. 

2.5 References 

1. Bloem J.J. (ed.) 1994, System Identification Applied to Building Performance Data, 
EUR 15885 EN 

2. Bloem J.J. (ed.), 1996, System Identification Competition, ISBN 92-827-6348-X, EUR 
16359 EN 

3. ISO 9869, Thermal insulation – building elements – In situ measurements of thermal 
resistance and thermal transmittance , 1994 

4. ISO/WD 9869-1, Thermal insulation – building elements – In situ measurements of 

thermal resistance and thermal transmittance – Part 1 : heat flow meter method, 2014 
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3. Measurement of thermal and solar 
transmittance of building components 
tested in outdoor calorimetric test cells 

G. Alcamo (DIDA), A. Erkoreka (UPV/EHU), M.J. Jiménez (CIEMAT) 

3.1 Test procedure 

Calorimetric test cells aim to obtain the thermal and solar characteristics of building 
components under real dynamic outdoor conditions. In general, neither the heat loss, nor the 
solar heat gain through the component, can be measured directly because of the 
simultaneous occurrence of a variety of heat transfer mechanisms through the component. 
However, these quantities can be inferred indirectly based on the measurement of the net 
heat flow through the building component. Calorimetric test cells are specifically designed to 
measure this latter quantity in an accurate way. Since the net heat flow through the 
component is related to its thermal and solar characteristics, the measurement of the time-
series of the net heat flow and of internal and ambient conditions (temperature, global solar 
radiation perpendicular to component, wind speed,…) allows to identify these performances. 
The idea of measuring the heat flow rate through a building component in an indirect way is 
crucial when non-homogeneous or (semi-)transparent samples are tested where the heat 
flux meter method is not applicable. 

 

Figure 5.1: Schematic view of the heat balance in the PASLINK test cell (Jimenez et al. 
2008) 

Figure 5.1 shows a cross section through a typical test cell as an example: the well-known 
PASLINK cell. The measuring principle is explained here by means of the steady-state heat 
balance of the test room: 

 srtcauxc,net P    (5.1) 

where net,c is the net heat flow rate (W) from the test room through the component to the 
exterior (to be defined); Paux is the heating power (W) supplied to the test room (measured, 

allowing for any cooling extraction);  tc is the heat flow rate (W) from the test cell to the 
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exterior across the test room envelope (measurement method depends on the type of test 

cell);  sr is the heat flow rate (W) from the test cell to the service room across the partition 
wall (measurement method depends on the type of test cell). 

To define the component’s characteristics, the net heat flow rate is expressed in terms of its 
heat loss and heat gain parts, for example in steady state conditions: 

 v,solsoleic,net IA)TT(H   (5.2) 

Where H is the heat transfer coefficient (W/K) of the component (in the figures the notation 
UA is used); Ti and Te are the measured internal and external temperatures respectively (K), 
Asol is the solar aperture (m²) of the component (in the figures the notation gA is used); Isol,v is 
the measured solar irradiance (W/m²) in the plane of the component. 

The accuracy of the test cell largely depends on the measuring method used to determine 
the heat flow rate through the envelope of the test cell (the last two terms in eq. 5.1), and on 
the response of the HVAC system used to supply or extract heat to the test room. 

In early test cells, like the ones that were developed in the PASSYS-project starting in 1985, 
the heat flow rate through the envelope of the test cell was obtained from prior calibration 
measurements and from measurement of temperatures at the internal and external surface 
of the test room envelope during the actual test. This methodology however required too long 
testing periods and the test results were limited to some steady state characteristics of the 
tested sample.  

Two methods for allowing a more accurate measurement of the heat flow rate through the 
envelope of the test room were developed by the PASLINK network inside the COMPASS 
European project. The Pseudo Adiabatic Shell (PAS) consists of an electric heating foil used 
to compensate for the heat loss through the test room envelope. Fig. 5.1 shows a vertical 
section of the test cell with the PAS installed. The mean temperature difference between the 
aluminium plates at both sides of the PAS is measured by thermopiles. The thermopile signal 
is used to control the heating foil in such a way that the resulting heat flux comes close to 
zero. On the other hand, the idea of TNO (Building and Construction Research, Delft, 
Netherlands) was to substitute the PAS by custom made heat flux sensors in the form of tiles 
covering all the internal surfaces of the test room. The advantage is that the thickness of the 
elements is only a few millimetres and that direct measurements of rapid changes may be 
possible thanks to the fast thermal response of the tiles. These concepts are further 
improved in more recent test cell designs, eg in the University of Florence the use of heat 
flux tiles with integrated Peltier cells was investigated, and at Fraunhofer a PAS-like concept 
was implemented by means of water-bearing absorbers (Janssens 2016). 

By means of the two previous methods, higher accuracy is obtained and the duration of the 
test sequence can be reduced significantly. Within 1 week of measurements sufficient 
information is gained to determine the main thermal parameters. This is an important cost 
reduction. 

3.2 Data analysis 

3.2.1 STEADY STATE ANALYSIS 
Based on the steady-state heat balance of the test room, successive averaged 
measurements under different boundary conditions allow to derive the components steady-
state characteristics. The analysis is based on the rearranged form of equation 5.2: 
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Figure 5.2: illustration of a steady-state regression analysis using different integration 
periods: 10 day mean values (left), 1 day mean values (right) (Baker and van Dijk 2008). The 

symbols UA and gA in the figure correspond to H and Asol in Eq. 5.3. 

A graphical (X,Y) plot, with Y = net,c/(Ti-Te) and X = Isol,v/(Ti-Te), gives a linear relationship for 
which in principle only two distinct measurement points are needed to yield the performance 
characteristics of the components. With more points the H- and Asol-values are obtained by 
linear regression analysis, as illustrated in Fig. 5.2. While the steady state method is a 
straightforward, simple measurement technique, it has significant disadvantages, 
comparable to the drawbacks mentioned in § 4.3.1 for the heat flow meter method: 

- The test duration should be sufficiently long to average out the influence of dynamic 
effects and obtain accurate results.  

- The method yields no information on the dynamics of the system e.g. thermal 
capacitance, time constants, etc. 

- Given the inertia of the test cell and of some highly insulated and/or heavy mass 
building components, an integration period of more than a week may be required, as 
illustrated in Fig. 5.2. When the integration period per point in the graph is only 24 h 
instead of 10 days, the daily average heat loss through the component is strongly 
influenced by the history of the previous days. The illustrated linear regression line 
does not provide meaningful information in this case. 

In some works a first order correction is mentioned, as an alternative to solve some of the 
problems related to the application of linear regression method based on averages to 
dynamic tests of building components, leading to pseudo-dynamic models using daily 
averages, although dynamic methods are pointed out as more appropriate for such 
applications (Van Dijk and van der Linden 1993, Bloem and Martin 2001). 

3.2.2 DYNAMIC ANALYSIS 
In order to overcome the disadvantages of the steady state analysis methods, the emphasis 
has moved from steady state to dynamic methods with shorter test durations yielding 
improved information and more accurate results, with calculation of confidence intervals on 
the estimates in some cases. These methods are based on dynamic energy balance 
equations of the considered physical systems and the application of system identification 
techniques to obtain the parameters of interest. In parallel with improvements in test 
methodology as described above, software tools have been developed to enable the 
identification of the component characteristics and provide statistical information on the 
identified parameters. 

Different modelling approaches are used in system identification of building components 
(Jiménez and Madsen 2008). A lumped parameter RC model written as finite differences 
formed the basis for the LORD software (Gutschker 2008). Whilst LORD has been tailored to 
the specific requirements of the PASLINK Network, e.g. test cell experiments, it can easily be 
used for the analysis of other thermal systems. Continuous time linear stochastic modelling 
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(CTLSM) is a stochastic method that takes into account uncertainties in both the 
measurements and calculations. CTLSM is a semi-physical modelling approach using state-
space models described by stochastic differential equations and has evolved into the 
continuous time stochastic modelling (CTSM) software (Kristensen and Madsen 2003). 
CTSM has been used for estimating and identifying physical systems and performances, 
such as the heat dynamics of an entire building, the thermal characteristics of walls, the 
dynamics of heat exchangers, radiators and thermostats, etc. An important issue on dynamic 
data analysis is the experience of the user since for the same data series, same software 
and same parameters to be identified, different results may be obtained depending on the 
user. 

Another issue that must be addressed in data analysis is the correct assignment of inputs 
and outputs, once the energy balance equations are defined. This decision must be based 
on physical criteria such as causality and correlations between measured variables. 
Sometimes this assignment is evident and a single output approach is enough to afford the 
analysis. Sometimes tests can be set up to enhance this single output approach, for example 
using ROLBS or PRBS power sequences that excite the system and de-correlate variables. 
However in some circumstances the usefulness of these sequences is very limited. This is 
the case when temperature difference between indoors and outdoors is low, high solar 
radiation is present, and when the building envelope is highly insulated. Under these 
circumstances the amplitude of the heating sequence is drastically limited, and consequently, 
it is less effective as a test strategy, which makes identification of the required parameters 
more difficult. This problem is very frequent, even in winter, in locations with warm and sunny 
weather such as the south of Spain. An alternative to overcome these problems is using 
multi-output models. A case study successfully applying this approach is summarised by 
Jiménez and Heras (2005). 

3.3 Uncertainty analysis 

In commercial tests of building components carried out by CIEMAT, uncertainty is estimated 
according to the “ISO Guide to the expression of uncertainty in measurement” (ISO 1995). 
The applied procedure adapted to estimate the uncertainty of the thermal parameters 
identified from dynamic tests is described in detail by Jiménez (2005) and summarised in a 
PASLINK report (2003). 

One of the key steps in the applied procedure is the estimation of each sensitivity coefficient 
as specified by the ISO guide. Taking into account that the characteristic parameters are 
obtained numerically from time series of measurements, and it is not practical to establish an 
analytical expression of these parameters as function of every measurement used to 
estimate its value, the estimation of each sensitivity coefficient ci corresponding to variable xi, 
as the corresponding partial derivative becomes almost impossible. The adopted option as 
suggested in the ISO guide for these cases, is to obtain the product ciu(xi), calculated as half 
of the difference of the changes in the parameter estimate, due to changes in the input 
estimate equal to its uncertainty u(xi) and –u(xi). The final estimation includes a coverage 
factor K=2 that was applied for a 95% confidence interval, as recommended by the ISO 
guide. 

3.4 Application examples 

3.4.1 ESTIMATION OF BUILDING COMPONENT U-VALUE TESTED IN MEDITERRANEAN 

CLIMATE 
The work by Naveros et al. (2012) investigates the capabilities and limitations of the average 
and linear regression methods applied to the thermal performance analysis of real size 
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building components tested in dynamic outdoor weather conditions, considering the analysis 
to obtain the air to air U value of a homogeneous opaque wall tested in the South East of 
Spain. 

This study aims to distinguish which of the problems observed in these methods are 
specifically related to the regression average method such as the minimum integration 
period, and which are related to general aspects such as the minimum terms necessary in 
the energy balance equation which should also be solved in dynamic approaches. Integration 
periods from one to ten days have been considered. A noticeable improvement was 
observed as the integration period was increased from one to five days. Larger integration 
periods did not show significant improvements. The influence on the energy balance 
equation of global solar radiation, longwave radiation and wind speed has been analysed. 

  

(a) Using 1 day averages and linear 
regression including Ti-Te, Isol,v and without y-
intercept. Results for different data sets 
present a large variation that cannot be 
explained. 

(b) Using 5 days averages and linear 
regression including Ti-Te, Isol,v, wind speed, 
and y-intercept. (U not available for series 1 
and 2 because wind speed not available). 
Improvement in agreement of results for 
different series. 

Figure 5.3: Data analysis of a homogeneous opaque wall using linear regression methods 

Significant improvements have been observed when including wind speed. Although it was 
possible to obtain accurate results, the main drawback of this method is that an excessively 
long test period is required to obtain reliable parameter estimates. Examples of results are 
presented in Figure 5.3. 

3.4.2 ANALYSIS OF BUILDING COMPONENTS TESTED IN WARM AND SUNNY WEATHER 
An experiment carried out by CIEMAT in Almería, south east of Spain shows the application 
of non-linear models when testing and analysing a wall with window component using test 
cells in warm sunny weather (Jimenez et al. 2008). 

Several linear models were used at test-cell level. First, traditional RC linear models, then a 
wider and more general set of linear transfer function models (ARX), and more detailed state 
space model were progressively developed. 

When the most commonly used RC models and more general linear transfer function models 
were used to estimate UA and gA, the analyses showed wide discrepancies between the 
results and their expected values, as well as between the results obtained for different 
datasets. Remarkably better and realistic estimates of UA and gA were achieved in the test-
cell-level analysis when the effect of the long wave exchange in the indoor surface of the test 
cell was considered as a non-linear boundary effect. This improvement is noticeable when 
the non-linear effect is approximated using transfer function models, but it is emphasized 
even more by considering a slight difference between the air temperature in the test room 
and the temperature of the corresponding sensor in a more detailed non-linear state space 
model. Examples of results are presented in Figure 5.4. 
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(a) Estimates using RC linear models with 
traditional assumptions leading to physically 
unrealistic results. 

(b) Estimates using state-space model 
considering the longwave heat exchange at inner 
surfaces of the test cell, leading to consistent 
results. 

Figure 5.4: Window tested in a test cell. Test conditions in series 1 to 5 in summer, 6 and 7 in 
winter. 2 to 6 with test cell facing north. 1 and 7 with test cell facing south. 
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4. Measurement of heat transfer coefficient 
of whole buildings based on co-heating 
tests 

G. Bauwens (KU Leuven), S. Stamp (UCL), D. Johnston (Leeds Becket) 

4.1 Test procedure 

A common method to evaluate the thermal performance of a building in situ is the co-heating 
test. It represents a quasi-stationary method based on linear regression analysis of dynamic 
measurement data. 

With a co-heating test the total heat transfer coefficient (combined transmission and 
ventilation heat loss), denoted H, in W/K and the solar aperture in m2 of an unoccupied 
dwelling are estimated. The heat transfer coefficient incorporates losses through all 
mechanisms and across the entire building envelope and includes variations in the fabric and 
through unpredicted thermal processes. 

The co-heating method works by using an approximated or quasi-steady state energy 
balance. During the test, an unoccupied dwelling is homogeneously heated to an elevated 
steady-state interior temperature (e.g. 25°C), using electric resistance point heaters, 
thermostatic controllers and ventilators. The internal heat gains from these devices are 
measured directly via kilowatt-hour meters, a quantity defined as electric power. Additionally, 
the indoor and outdoor temperatures, wind speed and direction, and solar radiation are 
monitored throughout the test. 

 

Figure 6.1: Co-heating principal. At constant internal temperature, the heat input (from 
electric heaters and solar gains) is equal to the total heat loss across the building envelope. 

Hence, the co-heating test essentially consists of a thermostatic heating procedure stretched 
over a longer period of time. The effect of charging and discharging the thermal mass of the 
building is thereby diminished. As a basis for analysis, the measurement data is averaged 
over a significant time-span (1 day, 2 days, week, ...). Both factors serve to explain the quasi-
stationary nature of the co-heating test methodology. The term quasi refers to the varying 
external weather conditions, which impedes the test from being truly steady-state. The co-
heating method arose from work at a number of locations in the late 1970s and early 1980s 
including at the US Solar Energy Research Institute (Sonderregger, 1979; Balcombe, 1992), 
and at ECRC in the UK (Siviour 1981). The method was explored and developed by 
Subbarao et al., (1988) and Everett (1985). In the UK, sporadic use of the method through 
the 1990s  was followed by an intense period of activity at Leeds Metropolitan University, 
which resulted in the development of the current UK experimental guidelines (Wingfield et al., 
2010, Johnston et al. 2013). 



 
 
 
 

 
20 

 

The co-heating test itself is often combined with further testing methods and a forensic 
examination of the building. As an example, elevated and stable internal temperatures can 
assist a thermography survey, with particularly good results observed during a 
depressurisation test at the end of the co-heating test.  Additionally, heat flux sensors, 
temperature traces and partial deconstruction of the fabric can all help researchers 
determine more about a building's thermal performance, with more accuracy. 

In order to undertake a successful co-heating measurement campaign, tailored equipment is 
indispensable. A number of electric heaters and ventilators serve to heat up the dwelling to 
an elevated, uniform and constant indoor air temperature. The obtained indoor air 
temperatures and relative humidities are monitored. Additionally, the outdoor air temperature, 
relative humidity, solar radiation, wind speed and direction and rainfall are monitored at a 
weather station placed close to the investigated dwelling. All sensor data is transmitted to a 
centrally placed logger. 

4.2 Data analysis 

4.2.1 STEADY STATE ANALYSIS 
The co-heating test essentially assumes the following stationary heat balance on the 
investigated building (based on Everett, 1985): 

 TH)TT(HIA eisolsolP    (6.1) 

where P is the energy supplied by heaters and dissipated by ventilators [W]; Isol is measured 
or calculated solar irradiance [W/m2];  Ti - Te = ΔT is the temperature difference inside-
outside. As the estimated heat transfer coefficients depends largely on the established ΔT it 
is important that representative internal and external temperatures are used. A 
representative Ti needs to be constructed from the measured indoor air temperatures in the 
different zones of the dwelling: by (1) plain averaging, (2) weighting by volume or surface, (3) 
weighting by assumed associated heat loss of respective zones, (4) applying principal 
component analysis. Weighting can be useful in instances where zones associated with 
sensors are extreme in size or heat loss, i.e. large-small volumes and/or low-high heat loss 
elements. In general, however dependent on the quality of the experiment (Ti is 
thermostatically controlled in most dwelling zones), the choice of weighting method can be 
expected to be of little importance. 

The solar aperture Asol [m2] and the overall heat transfer coefficient H [W/K] express the 

relation between P as a dependent variable and Isol and ΔT as independent variables. Asol 
can be read as a global solar aperture per orientation which comprises the influence of non-
perpendicular incidence of solar radiation, geometry (including possible shading) and 
orientation of the building, solar absorption at opaque surfaces, solar energy transmittance 
factor and glazing surface of the building envelope. Essentially, it relates the effective internal 
solar heat gains to the externally measured solar radiation. Asol can be derived 
experimentally from the co-heating data or estimated from properties of the buildings and it's 
glazing (e.g. SAP, 2009), although calculation methods rely on many assumptions and 
typically ignore gains through opaque elements. Solar heat gains will also have an effect on 
the amount of heat that is lost through non-habitable areas of the dwelling that are outside 
the buildings thermal envelope. Such areas include cold ventilated roof spaces and knee 
walls. 

The analysis of co-heating measurement data (time averaged data points for P, Isol and ΔT) 
is commonly done using linear regression techniques. The advantage over plain averaging is 
that possible outliers can be taken into account in a more sensible way. Often data will need 
to be removed from the beginning of the test, whilst the dwelling is being heated up and the 
thermal mass charged. A simple average of total power input and average temperature 
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difference across the valid test period can be useful as a check on the regression process 
itself, particularly when there is not a wide spread in data points. 

Assuming the heat balance in Equation 6.1 to hold, the parameters of interest, are generally 
determined by applying simple or multiple linear regression techniques on co-heating 
measurement data (c being a constant heat loss term, see Bauwens and Roels 2014): 

 cTHIA solsolP    (6.2) 

 

Essentially, three options can be discerned: 

1. The energy supplied to the interior under the form of electrical energy can, e.g. on a 
daily average basis, be corrected for solar gains and plotted as a function of ΔT (Fig. 
6.2(a), where the notation HLC, heat loss coefficient, is used for the heat transfer 
coefficient H). This correction implies that the solar aperture parameter Asol is 
calculated. Information of factors such as the total glazing area, the orientation of the 
glazing, the glazing solar transmittance, the solar access factor, the frame factor and 
the average incidence factor can serve as input here. Once calculated, the solar 
aperture is multiplied with the measured averaged solar radiation, to calculate the 
averaged solar gains AsolIsol. These values then serve to correct the raw heat input to 
the dwelling. 

2. An alternative to the method described above is to, aside from ΔT, consider Isol as an 

additional independent variable explaining the variability of P. Multiple regression 
techniques allow to determine both H and Asol in Eq. 6.2 (Lowe et al., 2007, Everett, 
1985). 

3. A third method is based on dividing all terms in Eq. 6.2 by ΔT. By doing so, an 
equation is attained on which a simple linear regression can be performed, assuming 

P/ΔT as dependent variable and Isol/ΔT as independent or explanatory variable, as in 
Eq. 6.3. 
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
  (6.3) 

 

As illustrated in Figure 6.2(b), an estimate of H is then given by the intercept. An advantage 
of this method is that the solar aperture can also be read as the slope of the regression line. 
In the figure the notation HLC is used for the heat transfer coefficient H and Asw,*for the solar 
aperture Asol. Note that this mathematical transformation implicitly forces the above described 
multiple linear regression through zero. In both of the earlier mentioned cases, a non-zero 
intercept is possible due to discrepancies between the measurement data and the assumed 
stationary model to which it is fitted. 

All of the options described above result in estimates for the heat transfer coefficient. The 
second and third methods additionally lead to estimations of the solar aperture. Although the 
solar aperture has lost much of its physical meaning in the analysis, it is important to quantify 
this parameter in those cases where solar radiation is significant during the experiment. In 
order for the solar radiation Isol to be of significant influence on the necessary heating power 

P, i.e. in order to have sufficient confidence Asol differs from zero, a sufficient spread in solar 
radiation needs to be observed during the test. None of the options consider other factors 
that in some cases have a significant influence on the heat input into the dwelling, such as 
wind speed, wind direction and fabric moisture levels. 
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Figure 6.2: Estimation of heat transfer coefficient and solar aperture by applying simple linear 
regression – a (left): based on eq. 6.2; b (right): based on eq. 6.3 (Bauwens 2014). 

 

4.2.2 DISAGGREGATION OF HEAT LOSS COMPONENTS 
The amount of heat loss that is measured during a co-heating test comprises two main 
components: fabric heat loss Htr and background ventilation heat loss Hve. The proportional 
split between these two components can be estimated if the magnitude of one of the 
components is known. 

In the case of the background ventilation heat loss, it is possible to undertake various 
measurements during the test in order to determine the background ventilation rate. The 
background ventilation rate can then be used to calculate the background ventilation heat 
loss during the test. Three separate approaches can be adopted to determine the 
background ventilation rate (Liddament M. 1996). These are as follows: 

1. Fan pressurization technique; 
2. Tracer gas decay method; 
3. Constant concentration tracer gas method 

The fan pressurization technique involves undertaking a pressurization test immediately 
before the commencement of the co-heating test and immediately after the end of the co-
heating test. The average of the two measurements is then used to give a reasonable 
approximation of the average air leakage rate achieved within the building over the period of 
the co-heating test.  

The background ventilation rate ninf can then be approximated using the simple n50/20 rule of 
thumb. This involves dividing the air leakage rate in air changes per hour at 50 Pa by 20. A 
correction factor can then be applied to the figure to take account of the leakage exponent, 
the building geometry, the height of the dwelling and any sheltering from neighbouring 
buildings. Suitable values for the correction factor are normally given in the national 
calculation methodologies for the energy performance of buildings.  

It is important to realize that inherent within the above procedure is the assumption that 
ventilation heat loss has a linear relationship with ΔT. This is unlikely to be the case, as 
ventilation heat loss is likely to increase the greater the ΔT due to convection, stack and 
pressure effects. 
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The tracer gas decay method involves introducing an inert tracer gas into the building and 
measuring the concentration of the gas inside the building at specific time periods throughout 
the co-heating test. The tracer gas decay method will give a direct measure of the 
background ventilation rate averaged over the decay period (Roulet and Foradini 2002).  

The constant concentration gas method involves introducing an inert tracer gas into the 
building and measuring the rate at which the tracer gas needs to be introduced into the 
building to maintain a specific concentration. This gives real time data on the ventilation rate 
for the duration of the co-heating test. 

4.3 Recommendations for reliable results 

Currently the co-heating method experiences limited use mainly as a research tool in the UK, 
whilst there are examples of use in other locations (e.g. Masy, 1985). Examples exist of both 
how co-heating and additional evaluation tools can improve both our fundamental 
understanding of building heat loss (Lowe,2007), and also provide effective feedback to 
developers to improve actual performance (Wingfield et al., 2011; Miles-Shenton et al., 
2011). However, despite acknowledgement of the benefits more widespread testing could 
yield, further application has been limited for a number of reasons. In particular, the issues 
collected in this section need to be considered when planning to undertake a co-heating test. 

4.3.1 TESTING PERIOD 
The period within the year in which testing should be undertaken is dictated by the 
requirement to obtain a sufficiently large indoor-outdoor temperature difference ΔT (generally 
10 K or more). Consequently, the co-heating test should be carried out in the winter months. 
An added advantage of undertaking the tests during this period is that the effects of solar 
radiation are also minimised. This is to minimise the risk of the temperature within any of the 
south-facing rooms increasing above the mean set-point temperature within the dwelling due 
to the effects of solar gains. 

4.3.2 DURATION OF THE TEST 
Careful consideration must also be given to the duration of the co-heating test. The amount 
of time required to undertake a co-heating test can vary considerably and is dependent upon 
a range of factors. Such factors include: the thermal characteristics of the dwelling, the 
amount of residual moisture contained within the fabric of the dwelling, external 
environmental conditions, the time taken for the dwelling to become heat saturated and the 
objectives of the test. Ideally, the test should be undertaken for a sufficient period of time to 
enable there to be a number of data points plotted on the power versus ΔT graph, at as wide 
a range or spread of ΔT 's as possible, such that an appropriate regression coefficient can be 
obtained for the data.  

Experience suggests that as a minimum, the test should be undertaken for one week after 
heat saturation of the dwelling has occurred. In most cases a test should be able to be 
undertaken in 2 to 4 weeks. However, generally speaking, the longer the testing period, the 
greater the potential spread of the data obtained, and the better the outcome. 

Co-heating test data should be collected 24 hours a day during the length of the test. Only 
measuring night-time data, say from 6pm to 6am, is not advised, as it tends to ignore mass 
effects. This can be particularly problematic in heavyweight dwellings. 

4.3.3 THE DETERMINATION OF DAILY AVERAGED DATA 
The analysis of co-heating data is normally undertaken using the average of the daily data, 
where daily data is defined as that data recorded over the period 00:00 to 23:59 inclusive. 
Analysing the data using daily figures will tend to smooth out the short-term (daily) effects of 
thermal mass and diurnal variations in temperature and solar radiation. By averaging the 
data over the period 00:00 to 23:59 inclusive it is assumed that all of the solar radiation 
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absorbed by the fabric of the dwelling is re-radiated back to the space by midnight of the day 
in which it was absorbed. This may be true in buildings of lightweight or even medium weight 
construction, but is unlikely to be true in dwellings of heavyweight construction. In such 
dwellings, it may be more appropriate to average the daily data over the period 06:00 to 
05:59 inclusive, although it is recognised that in some dwellings, it may take more than a day 
for all of the absorbed thermal radiation from one day to be re-radiated back to the space. 

4.3.4 BUILDING TYPE AND FORM 
Careful consideration has to be given to the type, the form and the method of construction 
used on the dwelling that is to be tested. In dwellings that have a large number of relatively 
small rooms, additional equipment may need to be installed (fan heaters and/or air circulation 
fans) to ensure that the mean elevated temperature is achieved within all of the rooms within 
the dwelling. In dwellings that comprise two or more floors, difficulties can be encountered 
maintaining the mean elevated temperature throughout the dwelling, due to stack effects. 
Additional air circulation fans may need to be positioned within the dwelling to blow any warm 
air that is naturally rising up through the dwelling back down to the lower floors to enable 
adequate mixing of the internal air. 

One of the most difficult dwelling forms to undertake a co-heating test on is an apartment. 
When testing apartments, careful consideration needs to be given to any heat loss that may 
occur through any party elements of construction (such as party walls, party floors, etc.) or to 
any unoccupied spaces (such as stairwells, communal areas, etc.), which are often not 
heated. Ideally, access to adjacent apartments or spaces should be obtained to maintain 
these spaces at the same mean elevated internal temperature as the test apartment. 

In apartments that have a small proportion of external envelope area in relation to floor area, 
the heat loss from the apartment may be so low that it is difficult to obtain a reliable co-
heating test result, due to the influence of various external factors, such as solar gains. 

4.3.5 WIND SPEED AND DIRECTION 
Wind speed and wind direction can have an impact on the results obtained from a co-heating 
test. The effect that these will have on the test result will be dependent upon a number of 
factors. These include: the airtightness of the test dwelling, the distribution of the leakage 
paths within the dwelling, orientation of the dwelling, location and the effects of any 
sheltering. In some cases, it may be possible to account for wind speed by introducing wind 
speed as an additional independent variable within a multivariate linear regression analysis. 
However, experience suggests that attempting to correct for wind speed and direction is 
inherently problematic due to the number of complex interrelated variables involved. 
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5. Rapid measurement of heat transfer 
coefficient of whole buildings based on 
transient heating 

G. Pandraud (Isover Saint-Gobain) 

5.1 Test procedure 

In order to overcome the relatively long test duration of co-heating tests, which is seen as a 
major drawback of the method, alternative test protocols have been developed that take 
short-term data as a starting point to estimate the heat transfer coefficient of a building. The 
STEM/PSTAR-method, developed in the 1980’s by Subarrao et al. (1988), allowed to 
determine the statics as well as dynamics of a building from tests conducted over a period of 
a few days. More recently, the QUB method (Quick U-Value of Buildings), has been 
developed by the Saint-Gobain group in order to estimate, in a relatively short time (two 
nights at most), the sum of thermal transmission Htr and infiltration/ventilation losses Hve. 

 

Figure 7.1: Schematic representation of the QUB-test procedure 

The QUB-method has first been exposed and described in a patent (Mangematin et al. 
2012a), and is discussed more in detail in this chapter. The method only uses the building 
temperature responses to two successive excitations of constant but different powers 
(generally, the building is first heated with a constant power and then cooled when the power 
source is stopped), see Figure 7.1. The external and internal temperatures of the building are 
measured during the entire period, and the time derivatives of the internal temperatures are 

calculated. If we note 1 and 2 each successive phase, P the powers, T the difference 
between internal and external temperatures, and T’ the time derivative of internal 
temperature dT/dt, then the measured heat transfer coefficient H is simply calculated by: 
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This simple formula is easy to use, and requires only basic calculations which can be written 
in a spreadsheet.  

There are only a few requirements for this method. All the measurements are made at night 

in an empty building in order to know the powers P,1 and P,2 with accuracy: electrical power 
is measured, solar or internal loads are considered negligible. Besides, the power must be in 
a range which is adapted to the external conditions. More precisely, if we can approximately 
estimate the value of H, for example with a heat transfer calculation, then the value of the 

parameter  should hold approximately between 0.3 and 0.7, with: 
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and Ti,0 the initial interior temperature, and Te,1 the mean exterior temperature during the first 

part of the test (typically heating). More details about the background of parameter  is given 
in §7.2. 

For accurate QUB measurements, it is essential that the input power is measured correctly. 
For this reason, the tests are done at night (to limit solar gains), in empty buildings (to limit 
internal gains), and the consumption of thermal powers is measured (for an electrical 
heating, intensity and tension have to be measured both to reduce uncertainty). 

Similar as in the co-heating procedure, data treatment in QUB assumes homogeneous 
temperatures. It is possible to measure a temperature and calculate a heat transfer 
coefficient in each room, but if the temperatures of different rooms are all different, it can be 
difficult to assume that they are homogeneous inside each of the rooms. If they are not, the 
position of the temperature sensor can have a big influence on the results and lead to errors. 

This is not an issue during co-heating tests, for instance, as in such quasi-static tests, 
temperatures can be regulated in each room, assuring a satisfying homogeneity. During a 
dynamic test, indoor temperatures will change at different speeds, depending on local 
powers, heat losses and internal heat transfers. A perfectly homogeneous heating can be 
approached by using a large number of low power sources (see §7.3).  

5.2 Data analysis 

The simplest model one can use to represent a building submitted to transient heat transfer 
is probably the lumped capacitance analysis with internal energy generation. It supposes that 
the interior of the building is at homogeneous temperature, that all heat transfer happens 
through an infinitely thin interface with homogeneous temperature, and that the exterior 
temperature is constant. Thus, it is an R-C model with only one resistance and one capacity. 
The well-known equation is (Mangematin et al. 2012b):  

   dtTHdTC P    (7.3) 

Where C is the internal heat capacity of the building (defined as the total energy needed to 

increase the interior temperature by 1 K, at a constant exterior temperature), P the internal 
power brought by all heating sources inside the building and possibly the solar gain, H is the 

total heat transfer coefficient of the building and T is the difference between the interior and 
exterior temperatures. 

If two separate experiments 1 and 2 are done, with two different powers, if we assume H and 
C to be constant during these two experiments and if we note T’ = dT/dt, equation 6.1 can 
easily be demonstrated. Thus it is quite easy to calculate H from only two experiments if the 
temperature variation in time can be approximated by a linear function (T’ constant), and if 
the temperature difference can be approximated by a constant average during part of the test 
period. 

Of course, such a model is too crude to represent the real behaviour of a building. Thus, 
more complex models, first with 3 resistances and 2 capacities (Pandraud et al. 2013a), then 
with an infinite number of nodes (Pandraud et al. 2013b) have been used to prove that after 
a few hours with a constant heating power, the temperatures evolve as if the building had 
only one time constant. Hence, the model with one R and one C is assumed to be valid, and 
equation 7.1 can be used. 
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Other investigations have shown that if the duration of the heating period is equal to that of 
the cooling period (t1 = t2), the tests can be accurate even if the total duration is less than 8 h, 
even as short as 1 h (Pandraud et al. 2014). To explain this effect, a different model has 
been developed, in which the envelope is represented by a multi-layer wall in which the heat 
transfer is 1-dimensional, but there is no limit on the number of layers. This problem is then 
solved by a quadruple approach.  

Some assumptions are made in order to simplify the calculations: t1 = t2; the external 
temperature is supposed to be constant during each phase; the QUB test is assumed to start 
from steady-state conditions; and the power dissipated during the cooling phase is negligible. 
The result of such a model can be written in a semi-analytic expression of HQUB, the 
measured value of the heat transfer coefficient, as a function of its theoretical value H, a 

parameter called , as defined in equation 7.2, a function f(), which depends on  and on 
the heating duration t1, and on the resistances Ri and the capacitances Ci of the model (i.e. of 
their repartition in the wall): 
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 21
  (7.4) 

More details about the origin of this equation, how it is calculated and what it means are 
explained by Pandraud et al. (2014). 

 

Figure 7.2: HQUB vs. α (Energy House Salford); 1 h and 4 h are the heating phase durations 
(half the total test duration); K0 is the reference value for the heat transfer coefficient H as 

obtained in steady state tests. 

Equation 7.4 predicts that at low values of , HQUB = H, but that HQUB increases with  and 

can reach very high values when  is close to 1 (although  does not have theoretical 
bounds, its value is usually in the range 0-1, except when specific experimental conditions 
are reached, generally on purpose, in order to fully study its influence). This result has been 
tested both numerically and experimentally, and all results tend to the same conclusions. 

Figure 7.2 presents as example a study of the influence of  on HQUB made in the Energy 
House at the University of Salford. 

The three main conclusions of the measurements are: 

 as predicted, the value of HQUB increases for high α and overestimates the steady-
state reference H (K0 in the figure), 

 as predicted, the overestimation is reduced by increasing the test duration, 
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 contrary to what is predicted, low α values can also lead to errors, in this case 
underestimations. 

The third conclusion is not derived from the model we use, but numerical results tend to 
show that this is due to the hypothesis of initial steady state which is not accurate in practice. 
The numerical results confirm the experimental observations, both the large overestimation 
at high α values and relatively smaller underestimations at low α values. They show that, any 
value of α between approximately 0.3 and 0.7 results can be described as good. This is true 
in this particular case but has been shown to be also true in other cases, for different 
construction types (Pandraud et al. 2013a). 

5.3 Recommendations for reliable results 

The heat sources chosen by Saint-Gobain are heating mats of a 112.5 W nominal power. 
Depending on its size, 20 to 60 mats are typically required for a single family house. These 
mats can be placed horizontally, as in a simulation of an underfloor heating system, but this 
has problematic consequences. It both heats the air and the floor, in proportions that might 
not be reproducible and have even been seen to change during a single test, leading to 
sudden air temperature variations. 

To solve this problem, another use of these mats has been tested, with very interesting 
results. Instead of being put horizontally on the floor, they have been rolled and placed 
vertically (Fig. 7.3). This way, the heat exchange with the ground is minimal. Almost all of the 
heat power is dissipated in the air by natural convection (not really by radiation to the walls, 
as the mats are covered by an aluminium layer). This has led to a much better reproducibility 
and regularity.  

With the mats thus placed, it is much easier to have a homogeneous interior temperature 
with smooth evolutions in time, which is rather important for a method that relies on slope 
calculations. Those slope calculations, and all data evaluations in general, can be done 
simply with software like MS Excel, for instance, but it is important that the periods 
considered for this evaluation are chosen appropriately. 

First of all, as has been already explained, it is important that the chosen heating duration 
and the cooling duration be equal. Besides, the values are not evaluated at a single point, 
but over a time period. So to have identical durations, each data analysis period must start 
and end at the same time relative to the phase’s beginning. For example, if the heating starts 
at 7 pm and ends at 1 am (for a 6 h heating duration), and we decide to evaluate all data 
over a period of 2 h, then the heating data are evaluated between 11 pm and 1 am, and the 
cooling data are evaluated 6 h later, between 5 am and 7 am. Thus, the data periods have 
the same duration and are both situated between 4 and 6 hours after the starts of their 
respective phases. 

When these choices are made, it is only a matter of averaging interior and exterior 
temperatures as well as powers during these two periods and calculating the appropriate 
temperature slopes, to apply equation 7.1. In order to reduce the uncertainty, it is possible to 
evaluate different values of H for instance by checking the values for evaluation periods of 
1.5, 2.0, and 2.5 h and averaging the values. It is also possible to weigh these values 
depending on criteria of quality of the correlation between temperature and time. There is no 
absolute rule for this aspect; any mathematical method enabling a better evaluation of the 
experimental temperature derivate can be used. 
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Figure 7.3: Vertically rolled heating mats 

5.4 Application examples 

The QUB method has been tested in several reference cases. A reference case is a building 
in which the heat transfer coefficient measured according to the QUB-method has also been 
evaluated in another way, preferably with a lower uncertainty than the QUB method. Several 
of these validation cases have been made. They are of three types: virtual (simulated) 
buildings for which the exact heat loss can be calculated precisely; reference buildings in 
which steady-state can be achieved and the heat loss can be evaluated with a very low 
uncertainty; and real buildings for which it can be very difficult to have reference values. 

5.4.1 VIRTUAL BUILDINGS 
In the case of QUB, the first feasibility tests have been made by comparing QUB results with 
reference values on the TRNSYS software. Some results for two-night tests are for instance 
presented by Alzetto et al. (2014). In this case, a building (single family house, 109 m², 
interior insulation) has received the weather file corresponding to the city of Rennes 
(France), and every week of the year, a virtual QUB test has been made. All 52 values have 
been compared with the reference value obtained by putting the house in steady-state 
(weather file corresponding to a constant exterior temperature without solar radiation). The 
reference value predicted is 143 W/K, and all values defined by the QUB procedure are 
included between 136 and 167 W/K, for an average of 150 W/K (+ 5%) and a maximal 
deviation of 17% (Figure 7.3). It is clear that 90 to 95% of HQUB values are included in H ± 
10%. 
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Figure 7.3: Distribution of HQUB vs. reference value Htot obtained in TRNSYS 

 

Figure 7.4: HQUB vs. H measured in steady-state as a function of heating duration (data 
obtained in Salford Energy House) 
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5.4.2 REFERENCE BUILDING: THE ENERGY HOUSE AT THE UNIVERSITY OF SALFORD 
The Energy House at the University of Salford is a unique experimental facility in which a 
typical Victorian house has been reconstructed inside a climatic chamber, enabling accurate 
measurements of its heat loss in different conditions (Janssens 2016). For instance, figure 
7.4 shows that HQUB can be measured with a good reproducibility even when the test duration 
is strongly reduced (the green dashed lines indicate the steady-state value ± 5%) (Pandraud 
et al. 2014). Figure 7.5 presents the very good concordance between results of QUB tests 
(8h total duration) and co-heating tests (performed by Leeds Metropolitan University, Farmer 
et al. 2014). The results are all very close, except maybe for the second test on Fig. 7.5, 
which can be explained by an experimental error: the test duration was in this case 1h 
instead of 8h. 

 

Figure 7.5: Comparison between QUB and co-heating results obtained at Salford Energy 
House 

 

5.4.3 REAL BUILDINGS 
The main difficulty with real buildings is that a validation requires another estimation of the 
building heat loss. The simplest way to do this is with co-heating tests, which still require 
several weeks of measurements. Some tests have been done in small scale buildings, like 
bungalows, or in real houses, but none have been published yet. On the other hand, 
feasibility and reproducibility measurements have shown very good results, for instance in 
Pandraud et al. (2013a) where dispersions, even between measurements done in summer 
and winter, have been very low, with standard deviations inferior to 5%. 

Besides, real buildings can be used to study the influence of other factors by successive 
measurements. For instance, the influence of air flow rate (through ventilation / infiltrations) 
has already been analysed this way by Pandraud et al. (2013a). 
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6. Estimation of the energy signature of 
buildings in use based on energy use 
monitoring 

C. Giaus (INSA de Lyon), E. Himpe (UGent) 

6.1 Test procedure 

The energy use data of buildings that are in use, are typically collected on a monthly or 
yearly basis, e.g. for billing purposes. Moreover, new and refurbished buildings are more and 
more equipped with energy monitoring systems (e.g. in Building Energy Management 
Systems) that record energy use data and related parameters at higher frequencies (e.g. one 
per hour, once per 15 minutes…). Combined with climatic data, these data may be used to 
assess the energy performance of the building based on a so-called energy signature model, 
that is the relation between the energy use and environmental parameters, typically the 
outdoor temperatures (Westergren 1999, Santamouris 2005). Simplified static models use 
the regression of energy consumption over the climatic data to obtain an energy signature. 

This relation may be used to evaluate the overall heat transfer coefficient of the building 
represented by the regression coefficient of the energy use-exterior temperature relation, 
divided by the external surface, and the base temperature, which is related to heat gains. 
The overall heat transfer coefficient and the base temperature are simple concepts useful in 
economic analysis of energy performance or in energy labelling of buildings (Richalet 2001). 
The energy signature may be used to diagnose the energy performance of the building and 
to make meteorological corrections of the energy consumption. They also enable to check 
the design performance against real data and during normal operation to compare the 
building performance in different years.  

6.2 Data analysis 

6.2.1 RELATION BETWEEN OUTDOOR TEMPERATURE AND ENERGY LOSS  
The thermal power for heating a building may be written as: 

 geiH,P )TT(H    (8.1) 

Where H, the global heat transfer coefficient of the building, takes into account the 
transmission and the ventilation heat losses, Te is the outdoor temperature, Ti is the uniform 

internal temperature of a building zone, and g are the heat gains from sun, internal sources 

(e.g. occupants, lights) and other zones (ASHRAE 2013). More generally, g may include the 
effects of thermal inertia which makes equation 8.1 applicable in dynamic regime. The 
outdoor temperature for which the building at indoor temperature Ti is in thermal balance with 
its environment, without heating or cooling, is called base temperature Tb and is related to 
the heat gains: 
 )TT(H big   (8.2) 

In thermally controlled buildings, the indoor temperature is quasi-constant. Heating is needed 
only when the outdoor temperature is lower than the base temperature. The thermal power 
for heating the building is then: 

  ]TT[H hebH,P    with
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The energy needed to heat the building during the time interval (t2-t1) is then: 

  
2

1

t

t
hebH td)]t(TT[HQ   (8.4) 

Or, when considering a fixed time interval t, for example of one hour, and taking the mean 
of the variables during this interval: 

 t))t(T)t(T)(t(HQ ebH   (8.5) 

In real buildings both H and Tb may vary in time. Representing the energy use data, QH, as a 
function of the mean outdoor temperatures will result in a cloud of data. As an example figure 
8.1 shows in the upper panel the cloud of data of energy consumption for heating during the 
working hours (9:00 to 17:00) for a simulated office building (Ghiaus 2006). Each point 
represents the energy consumption for an hour and the mean outdoor temperature during 
that hour. The lower panel presents the histogram of the outdoor temperature constructed 
using bins of 1°C. 

 
Figure 8.1: Example of hourly heating energy use (Q) and outdoor temperature data (To). 

Note that in this figure energy use assumes a negative value in case of heating. (Ghiaus 

2006) 

6.2.2 LINEAR REGRESSION AND CONDITIONS OF APPLICATION  
By using linear regression, the data cloud may be approximated by the linear expression: 

 e10H TQ    (8.6) 

From equations 8.5 and 8.6 we obtain the model estimate of the global heat transfer 
coefficient of the building, and the base temperature, i.e. the outdoor temperature for which 
the energy use is zero: 

 1H   (8.7) 

 10b /T   (8.8) 

The assumptions made for linear regression are that the outdoor temperature, Te, has a 
normal distribution and that the heat load, QH, is a random variable of mean 
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and homogeneous variance 
2 . These conditions imply that the residuals of the regressions 

should have a normal distribution with zero mean.  

The assumptions made for linear regression are not always satisfied in real situations: the 
building is not air-conditioned at a constant temperature for the whole range of the outdoor 
temperature. Consequently, the outdoor temperatures which correspond to the heating 
period does not have a normal distribution. The application of linear regression may become 
more problematic when data on short time intervals are used, for instance obtained from 
energy monitoring systems. These data may be less correlated due to the influence of 
thermal lag and random, non-measured disturbances like occupancy, control actions, 
ventilation rates and solar gains that do not follow a normal (Gaussian) distribution. In 
literature a number of solutions are documented to mitigate these problems. Two examples 
are given here. 

6.2.3 ROBUST REGRESSION OF HEATING LOAD CURVE BASED ON Q-Q PLOT  
Ghiaus (2006) proposed a robust regression based on quantile – quantile plot to correctly 
estimate the parameters of the model. The points in a q-q plot represent quantiles of the 
data. Quantiles are values that partition a finite set of values into n subsets of equal size. The 
k-th quantile, Pk, is that value of the random variable x having N values, say xk, which 
corresponds to a cumulative frequency of Nk/n. The quantile is called percentile for n= 100. 
The 25th and the 75th percentiles are called the first and the third quartiles. If the points in a q-
q plot lie roughly on a line, then the distributions are the same, whether normal or not. Figure 
8.2 shows an example of a q-q plot together with the corresponding histogram with real data 
collected in a French school building during a month of heating. 

 
Figure 8.2: Outdoor temperature and the heating load have partially the same statistical 

distribution. a) histogram b) quantile-quantile plot (Ghiaus 2006) 

A robust estimation of the linear relation between the outdoor temperature and the heating 
energy use may be done based on the central region of the q-q plot by considering data 
between the 1st and the 3rd quartile. If the two distributions are the same for this quantile 
range, then the coefficients of the model  

 

 oba TQ   (8.9) 
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6.2.4 LINEAR REGRESSION CONSIDERING DYNAMIC AND SOLAR GAIN EFFECTS 
Another method to improve the estimation of heat transfer coefficients based on linear 
regression of monitoring data is discussed by Danov et al. (2013). They suggest a linear 
regression-based method by using daily energy consumption and meteorological data. They 
show the total heat transfer coefficient can be estimated more precisely by explicitly including 
the accumulated heat and the solar gain in the building’s energy balance through an 
estimation of the effective heat capacity and the net solar gain of the building. 

The proposed method uses measurements of energy use, outdoor temperature and solar 
radiation that are integrated to daily data, because these are better correlated with respect to 
dynamic and solar radiation effects than higher frequency data, due to the thermal inertia of 
the building. The effective heat capacity of the building is evaluated by correlating the energy 
use and outdoor temperature changes from the previous day. The net solar gain of the 
building is assessed by analysing the data separated into groups by amount of daily solar 
irradiation. The calculation procedure then consists of the following steps:  

1. from linear regression of all data points the initial H-value is estimated and the cross-
point with the temperature axis is found;  

2. by regression of the energy use changes and temperature changes between 
consecutive days the effective heat capacity of the building Ceff and subsequently the 
dynamic heat correction are determined from the average outside temperature of the 
actual (k) and previous day (k-1):  

 )TT(CQ 1k
e

k
eeffdyn

  (8.12) 

3. by analysing the data by subsets for level of solar irradiation with applied dynamic 
heat correction, linear regressions with common cross-point (from step 1) are 
generated and the solar gain is determined;  

4. the dynamic heat correction and solar gains are introduced in the energy balance and 
the corrected heat transfer coefficient H is determined. 

6.3 Application example 

This section gives an application example of the linear regression method considering 
dynamic and solar gain effects. In a case-study with 9 public buildings in Spain, Danov et al. 
(2013) estimated the total heat transfer coefficient in three ways: 

3. without considering the dynamic and solar terms (basic method described in §8.2.2)  
4. considering only the dynamic heat effect  
5. considering the dynamic and solar gain effects  

The results of the study indicated that in practically all of the cases the dynamic correction 
leaded to an improvement of the regression from the perspective of the determination 
coefficient values and the addition of the solar correction further improved the regressions’ 
quality. 

The observed corrections of the total heat transfer coefficient in the majority of cases leaded 
to an increase of the value within the range of 10%. The remaining scatter of the data was 
mainly due to building use factors, such as the inefficient control operation of the heating 
system (internal temperature variations), heating equipment malfunctioning and occupant 
activities and behaviour. Moreover the application showed that the estimates of the effective 
thermal capacity were considerably higher for intermittently heated buildings than for 
continuously heated buildings. This showed that the effective thermal capacity can be used 
as an indicator for the heating mode of the building.  

The three parameters - the corrected total heat transfer coefficient, the effective heat 
capacity and the solar gain - can be used as performance indicators for specific 
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benchmarking in order to detect underlying building operational patterns and opportunities for 
energy savings based on daily data only. 

 
Figure 8.3: Total heat transfer coefficient determined from energy signature (daily data), with 

and without correction for the dynamic effect (Danov et al. 2013) 
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7. Grey box modelling of buildings in use 
based on dynamic energy use data 

P. Bacher (DTU) 

7.1 Data analysis method 

Analysing high-time resolution data measured in buildings requires modelling techniques 
which describe the heat dynamics of the building. Grey-box modelling is a modelling 
approach where prior physical knowledge are combined with data driven statistical modelling 
techniques (Bohlin and Graebe, 1995). Based on data with high time-resolution and a 
thoroughly developed framework for statistical inference using maximum likelihood 
techniques, dynamical systems can be modelled, and statistical testing, model selection and 
uncertainty estimation can be carried out. The models can be very detailed and both linear 
and non-linear effects can be modelled. 

In a grey-box model a description of the heat dynamics is given with a set of continuous 
stochastic differential equations (SDEs) in combination with a set of discrete measurement 
equations. This forms a continuous-discrete stochastic state-space model. The SDEs forms 
a lumped element model description of the physical system based on heat transfer and the 
model parameters are directly interpretable as representing physical entities, e.g. the heat 
capacities and heat transfer coefficients of different parts of the building. 

In this section first a description of a maximum likelihood scheme for parameter and 
uncertainty estimation in grey-box models is given, followed by a description of the required 
most basic set of measurements for grey-box modelling of a building. Then an outline of the 
output results and the advantages and drawbacks are discussed. Finally, a description of 
application studies with references are given. 

7.1.1 MODEL STRUCTURE AND PARAMETER ESTIMATION METHOD 
This section contains a condensed outline of a parameter estimation scheme for continuous-
discrete time stochastic state space models. A detailed outline of the scheme is given by 
Kristensen and Madsen (2003) and Kristensen et al. (2004a). The scheme is implemented in 
the R package CTSM-R which is free and open source. The package and documentation can 
be found at the http://ctsm.info. 

In the general case, the continuous-discrete stochastic state space model is a model that 
consists of a set of non-linear discretely, partially observed SDE’s with measurement noise, 
i.e.: 

 ttttt d),t,u(dt),t,u,x(fdx    (9.1) 

 kkkkk edt),t,u,x(hy    (9.2) 

where t  ℝ is the time variable; xt  X  ℝn is a vector of state variables; ut  U  ℝm is a 

vector of input variables; yk  Y  ℝl is a vector of output variables;     ℝp is a vector of 

(possibly unknown) parameters; f ()  ℝn, ()  ℝnxn and h()  ℝl are non-linear functions; 

{t} is an n-dimensional standard Wiener process and {ek} is an l-dimensional white noise 

process with ek  N(0, S(uk, tk, )).  

SDE’s may be interpreted both in the sense of Stratonovich and in the sense of Itô, but since 
the Stratonovich interpretation is less suitable for parameter estimation (Jazwinski 1970), the 

http://ctsm.info/
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Itô interpretation is adapted. Furthermore, the diffusion term in eq. 9.1 is assumed to be 
independent of the state variables, because this renders parameter estimation more feasible. 

7.1.2 PARAMETER ESTIMATION 
The solution to eq. 9.1 is a Markov process and an estimation scheme based on probabilistic 
methods can therefore be applied to estimate the unknown parameters of the model in eq. 
9.1-9.2, e.g. maximum likelihood (ML) or maximum a posteriori (MAP), where the latter can 
be applied if prior information about the parameters is available. Let: 

  S
N

i
NNN Si

Y,...,Y,...,Y,Y 21
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Y  (9.3) 

be a set of S stochastically independent sequences of consecutive measurements, where: 
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and let p() be a prior probability density function for the parameters. In the general case, 

point estimates of the parameters in 9.1-9.2 can then be found as the parameters  that 
maximize the posterior probability density function: 
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or equivalently: 
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where the rule P(AB) = P(A|B)P(B) has been applied in a successive manner to form 
products of conditional probability density functions. 

7.1.3 UNCERTAINTY ESTIMATION 
Since the parameter estimates are asymptotically normal distributed, and their covariance 
matrix can be approximated, the uncertainty (as the standard deviation) of each parameter 
can be found and t-tests can be used to test for significance, i.e. each parameter can be 
tested if it is significantly different from zero. An estimate of the uncertainty of the parameter 
estimates can be obtained by using the fact that by the central limit theorem the estimator is 

asymptotically Gaussian with mean  and covariance matrix: 

 1 H̂  (9.7) 

where the matrix H is given by the elements: 
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for i, j = 1,... , p, and where an approximation to H can be obtained from the elements: 
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for i, j = 1,... , p, which is the Hessian at the minimum of the objective function. A measure of 
the uncertainty of the individual estimates can be obtained by decomposing the covariance 
matrix: 

 
 ˆˆˆ Rσσ  (9.8) 

into , which is a diagonal matrix of the standard deviations of the parameter estimates, and 
R, which is the corresponding correlation matrix. The uncertainty information thus obtained 
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can subsequently be applied to perform tests of various hypotheses, e.g. to determine the 
significance of the individual parameters through t-tests. 

The asymptotic Gaussianity (i.e. normal distribution) of the estimator allows t-tests to be 
performed to test the hypothesis: 

 0:H j0   (9.9) 

Against the alternative: 

 0:H j1   (9.10) 

i.e. to test whether a given parameter j is marginally insignificant or not. The test quantity is 
the value of the parameter estimate divided by the standard deviation of the estimate, and 
under H0 this quantity is asymptotically t-distributed with a number of degrees of freedom DF 
that equals the total number of observations minus the number of estimated parameters, i.e.: 

 






















  

 

plt)DF(t
ˆ

)ˆ(z
S

1i

N

1kˆ

j
j

t
i

j



  (9.11) 

where, if there are missing observations in yi
k for some i and some k, l is replaced with the 

appropriate value of l . To facilitate these tests, )ˆ(z j
t  , j = 1, ..., p, are computed along with 

the probabilities: 

   p,...,1j,)ˆ(zt)ˆ(ztP j
t

j
t    (9.12) 

More details about the statistical tests can be found in Ljung (1999) and Madsen and Holst 
(2000). 

7.2 Model inputs and outputs 

7.2.1 MEASUREMENTS 
The following measurements are needed for a basic setup: 

 Indoor air temperature (°C). A time series representative of the indoor air temperature 
in the building. Since the models are lumped and the heat capacities are constant the 
temperatures are directly describing the thermal energy accumulated in the lumped 
mediums. The measured indoor air temperature should therefore represent the 
average temperature of the indoor air. 

 Heat input (W). A time series with values of the heating power provided by heaters in 
the building. 

 Ambient temperature (°C). A time series of the ambient temperature in the 
surroundings of the building. 

 Global radiation (W/m²). A time series of the global radiation measured near the 
building. 

 Wind speed (m/s). A time series of the wind speed measured near the building. 
Furthermore the wind direction is important to measure. 

In order to model a dynamical system it is necessary to excite the system such that the 
dynamic response can be modelled. The dynamic excitement must designed to be in the 
frequency and operation range dependent on system response in order to maximize the level 
of information in the recorded data. Furthermore the inputs should be uncorrelated, hence 
the controllable inputs should be designed to achieve this. Sequences with such properties 
can be formed by several techniques, for example as by a PRBS (Godfrey, 1980) or a 
ROLBS. The controllable input in the presented setup is the sequence with which the heaters 
are controlled. 
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7.2.2 OUTPUT PARAMETERS 
A grey-box model is formed by a physical lumped parameter description of the system 
dynamics combined with a statistical model part. The parameters in the physical part are 
directly interpretable as representing the physical properties of the lumped elements. The 
typical parameters in the models are 

 Heat transfer coefficients (or equivalently thermal resistances) between the lumped 
elements, for example from the interior to the ambient surroundings representing the 
H-value of the building. 

 Effective heat capacities. The effective heat capacities of different parts of the 
building represented by the lumped elements, for example of the indoor air and the 
interior walls and furniture. 

 Effective solar aperture. The effective area in which solar radiation enters the 
building. 

 Wind induced infiltration. Parameters representing the effect of wind speed on 
infiltration. 

The parameters are estimated in a maximum likelihood setting with a Kalman filter as 
described in Section 9.1. This scheme provides a range of statistical techniques to evaluate 
the performance of the model, for example the one-step ahead residuals are assumed to be 
white noise, which can be tested with the auto-correlation function and the cumulated 
periodogram. Furthermore, the Kalman filter minimize the impact of un-modelled effects on 
the parameters and time series plots of the one-step ahead residuals and the inputs are very 
useful for understanding model deficiencies. Kristensen et al. (2004b) suggest a systematic 
approach for improvement of grey-box models and Bacher and Madsen (2011) present a 
procedure for selecting and evaluating a suitable grey-box model for the heat dynamics of a 
building. 

 

7.2.3 ADVANTAGES AND DRAWBACKS 
The main advantages of stochastic grey-box modelling are 

 Continuous time physical description of the dynamics where parameters are directly 
physically interpretable. 

 Can be applied for high time-resolution measurements, hence the testing period can 
be minimized. 

 Maximum likelihood framework provides statistical techniques for assessment of the 
model performance and tests applicable for model selection. The setup furthermore 
provides techniques for pointing out model deficiencies. 

 Models are highly extendable and can model complicated non-linear dynamical 
systems, providing detailed insights into the dynamics and energy performance of 
buildings. 

 Multiple input and output models can be applied allowing detailed modelling based on 
experiments with advanced sensor setups. 

The main drawbacks are: 

 In the current modelling setup using the indoor air temperature as model output 
control over the heat input using a test sequence is required. 

 Compared to black-box discrete ARMAX models (Jimenez and Madsen, 2008) (or a 
bit more simplified as ARX models), where the dynamics are modelled by discrete 
transfer functions in which the parameters cannot be directly physically interpreted, 
then the formulation and the selection of a suitable grey-box model is naturally 
complicated. 
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7.3 Application example 

In this section a description of grey-box modelling of the heat dynamics of a building is 
presented. The experiments and data are described in full details in the report Bacher and 
Madsen (2010) and the modelling in the article Bacher and Madsen (2011). The R package 
CTSM-R is applied for the grey-box modelling. A two-state model is implemented, fitted and 
a model validation is carried out by analysing the one-step ahead residuals and the 
parameter estimates and uncertainties. Then the two-state model is extended to a three-
state model, which is fitted and analysed, and compared to the two-state model with a 
likelihood ratio test, in order to determine if the three-state model is a more suitable model 
compared to the two-state model. 

7.3.1 DATA 
The data used in this example was measured in an office building which is part of the smart-
grid experimental facility SYSLAB at DTU Elektro, Risø campus laboratory for intelligent 
distributed power systems in Denmark. The building is built in a lightweight wood 
construction. Time series of five minutes average values covering six days are used, plotted 
in Figure 9.1 from top to bottom: 

 Ti the average of all the indoor temperatures measured (one in each room in the 
building). The sensors were hanging approximately in the centre of each room (°C). 

 Ta the ambient temperature (°C).  

 P,H the total heat input for all electrical heaters in the building (W). 

 s the global solar radiation (W/m²). 

 Ws the wind speed (m/s) (not represented in Fig. 9.1). 
The climate variables were measured with a climate station next to the building. The 
electrical heaters are controlled with a PRBS signal, which is composed of two periods: a 
PRBS with periods in one state between 20 minutes and 2 hours - that is Part One in Table 
9.1 - and one period of a PRBS with periods in one state between 3.5 and 20 hours, it is Part 
Two in the table. Note the Part One is repeated. 

 

Table 9.1: Parameters for the single PRBS used for all heaters in Experiment 1. Note that 
Part One is repeated, i.e. as stated. The total length is 150 h = 6.25 days. 

Part n , shortest period in one 
state 

n, longest period in one 
state 

Total 
length 

One 6 20 min 2 h 21 h 

One 6 20 min 2 h 21 h 

Two 5 3.5h 20 h 108 h 

  



 
 
 
 

 
46 

 

 

Figure 9.1: Plots of the data: indoor and ambient temperature, heat input, global solar 

radiation. 

7.3.2 TWO-STATE GREY-BOX MODEL OF THE HEAT DYNAMICS OF A BUILDING 
The two-state grey-box model ModelTiTe illustrated with the RC-diagram in Figure 9.2 and 
defined by the system equations 9.13-9.14 together with the measurement equation 9.15 are 
specified in CSTM-R: 
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 kk,ik eTY   (9.15) 

The one-step ahead predictions and residuals are calculated and the auto-correlation 
function, the periodogram and the cumulated periodogram are plotted, see Fig. 9.3. Clearly, 
the residuals are not white noise and it is concluded that the model lacks in the description of 
the heat dynamics of the building. Considering the time series plot of the residuals (Fig. 9.4, 
first subplot), it becomes apparent that the dynamics of the system is poorly modelled in the 
short periods after level shifts in the PRBS heat input signal, i.e. every time the heaters are 
turned on and off. In the two-state model ModelTiTe the heat from the heaters is flowing 
directly into indoor air and the thermal inertia of the heaters is not taken into account. This 
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leads to the idea of including a part in the model which represent the heaters, as carried out 
in the three-state model described in the following section. 

 

 

Figure 9.2: RC-network equivalent 

 

 

Figure 9.3: Plots of periodograms of two-state grey-box model 
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Figure 9.4: Time series plots of residuals (1st subplot [°C]), output (2nd subplot, measured and 
predicted indoor temperature values coincide) and inputs of two-state grey box model 

7.3.3 THREE-STATE GREY-BOX MODEL OF THE HEAT DYNAMICS OF A BUILDING 
In this section a three-state model is fitted to the data and the results are analysed. The 
model is an extension of the two-state, where a heat capacitor and a thermal resistance are 
added to represent the heaters in the building. A temperature state Th representing the 
temperature of the heaters is included and the model equations become:  
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The RC-diagram in Fig. 9.5 is illustrating the model and it is denoted ModelTiTeTh. The model 
is fitted (i.e. parameters are estimated) with CSTM-R and the autocorrelation and cumulated 
periodogram are plotted, see Fig. 9.6. Clearly, the one-step ahead prediction residuals have 
white noise properties, especially compared to the residuals for the two-state model. Finally, 
the plots of the time series confirm that the residuals are much closer to white noise. 
Studying the residuals a bit closer reveals that the 8’th and 9’th, have some shorter periods 
with direct solar radiation, and that the level of the residuals in these periods is increased. 
Therefore further expansion of the model could be focused on improving the part of the 
model, where the solar radiation enters the building. 

Likelihood-ratio tests are very useful for determining whether a larger model is to be 
preferred over a smaller model (i.e. the smaller model is a submodel of the larger model), 
see Madsen and Thyregod (2010). Here a likelihood ratio test comparing the likelihood of the 
two-state model to the likelihood of the three-state model is used, see Bacher and Madsen 
(2011) for details. They show that the p-value is very low (<1E-16) and thus the three-state 
model is preferred over the two-state model. 

 

 

Figure 9.5: RC-network equivalent of the three-state model ModelTiTeTh 

 

 

Figure 9.6: Plots of periodograms of three-state grey-box model 
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Figure 9.7: Time series plots of residuals (1st subplot [°C]), output (predicted indoor 
temperature, 2nd subplot, measured and predicted values coincide) and inputs of three-state 

grey box model 

Table 9.2: The parameter estimates and the standard deviations The heat capacities, C, are 
in (kWh/K). The thermal resistances, R, are in (K/kW). The window area, Aw, is in (m²). 

Parameter Estimate Standard deviation 

iĈ  1.1 0.012 

eĈ  2.9 0.14 

hĈ  0.0014 0.00015 

ihR̂  93 9.7 

ieR̂  0.86 0.023 

eaR̂  4.5 0.094 

wÂ  5.6 0.26 
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7.3.4 PARAMETER ESTIMATES 
In Table 9.2 the parameters and their standard deviations are listed. Clearly, the estimated 
value of thermal resistance between the heaters and the indoor air around 93 K/kW is not 
feasible from a physical perspective, which is also the case for the heat capacity of the 
heaters. The reason for these two values being not physically interpretable is that the actual 
heat transfer is in reality more complex than the linear approximation assumed in the RC-
formulation. However, as found in the paper (Bacher and Madsen, 2011), further extension of 
the model can be carried out based on likelihood-ratio tests from the two-state and on to a 
four-state model, providing a better description of the dynamics. It is emphasized that the 
models are lumped linear approximations to the real system and care should be taken when 
interpreting the physical representation of each parameter, especially the smaller heat 
capacities in the present case. 

The estimated total heat transfer coefficient H of the building is for the three state model 

simply calculated by eq. 9.19. The H-value is thus estimated to Ĥ  = 185.1 W/K. 

 
eaie R̂R̂

1
Ĥ


  (9.19) 

However the estimate of its standard deviation cannot be calculated directly. The total H-
value is a non-linear function of two normally distributed values, which means that the 
variance cannot be directly calculated. Two reasonable approaches can be applied: a linear 
approximation and a simulation approach. For the linear approximation the Jacobian is found 
as described in Jiménez et al. (2008) and used to calculate the variance of the estimated H-

value to H̂  = 3.1, which results in a 95% confidence interval Ĥ   1.96 H̂  = [179.0, 191.2] 

W/K. 

For the simulation approach a set of multivariate normal values based on the estimates of 
the R values are generated. The H-value is then calculated for the generated values and the 
2.5% and 97.5% quantiles are estimated as the confidence interval confsim,H = [179.2, 191.4]. 

7.4 Applications in literature 

The following is a list of applications of grey-box modelling for energy performance 
assessment of buildings and building components. 

Madsen and Holst (1995) present the basis for grey-box modelling of the heat dynamics of 
buildings. A two-state model is fitted to data and maximum likelihood parameter estimation is 
carried out. Furthermore the relation between the continuous and discrete time 
representation is outlined, by rewriting the continuous time representation into a transfer 
function representation, i.e. an ARMAX model. The steady-state properties of the model are 
also described, i.e. how to obtain the estimated H-value of the building. Finally, the 
techniques for model evaluation are presented. 

Andersen et al. (2000) model a residential test house divided into two test rooms with a water 
based central heating. A four-state model is applied, where the indoor and floor temperature 
of the two rooms are each represented separately with a state. Heat transfer coefficients and 
capacities and effective window areas in the lumped model are estimated. The model is 
validated both from a physical and statistical perspective. 

Jiménez and Madsen (2008) present models for describing the thermal characteristics of 
building components based on data from in situ measuring. It is shown how the range from 
the most general non-linear stochastic grey-box model formulation to discrete transfer 
function models (ARMAX, black-box) over to linear regression models (steady-state models, 
i.e. no description of the dynamics) are related. 
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Bacher and Madsen (2011) present a procedure for selection of a suitable grey-box model 
for the heat dynamics of buildings. The suggested procedure is a forward model selection 
approach based on likelihood-ratio tests. It is demonstrated on five-minutes data from a 120 
m² test building and a four-state model is identified as the most suitable model. In the 
procedure it is described how the models should be evaluated both from a physical and 
statistical perspective. 

Lodi et al. (2012) presents grey-box modelling of a double skin building integrated 
photovoltaic system. The experimental data originates from tests carried out with an air-
based system installed in a test reference environment. Both one-state and two-state non-
linear grey-box models are considered. The most important energy performance parameters 
are estimated and the results are validated and discussed in detail. 

Bondy and Parvizi (2012) present multi-room grey-box model of the heat dynamics of a 
building. Seven rooms in a 120 m2-building are modelled having two temperature states for 
each room and the heat transfers to the adjacent rooms. The indoor air temperature in each 
room is included in the model output and all parameters are estimated. The results are 
thoroughly evaluated concluding that they are in accordance with previous (simpler) studies 
of the building, prior physical knowledge and with the statistical assumptions. 
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